您好,欢迎访问bat365正版唯一官网!

全国咨询热线

13384986092

神奇的“新材料之王”石墨烯未来的发展前景如何?

发布时间:2024-08-18 10:18:49浏览次数:

  神奇的“新材料之王”石墨烯未来的发展前景如何?近日,来自吉林大学、中国科学院金属研究所、国家深空探测实验室、国家航天局探月等单位的科研人员通过对嫦娥五号钻采岩屑月壤的观察分析,首次在月壤中发现了天然形成的石墨烯。

  凭借优异的性能及应用价值,石墨烯如今在化学、材料、物理、生物、环境、能源等众多学科领域已取得了一系列重要进展,并已广泛应用在电池电极材料、半导体器件、透明显示屏、传感器、电容器、晶体管等方面。

  作为碳的同素异形体,石墨是一种层状材料,石墨内部的碳原子是一层层排列的。碳原子在同一层里“手拉着手”,紧密相连,但不同层之间碳原子的结合却松松散散,好似一摞扑克牌,轻轻一推,牌和牌之间就会滑动开来。

  从化学结构的角度看,石墨是原子晶体、金属晶体和分子晶体之间的一种过渡型晶体。在晶体中,同层碳原子间以sp2杂化形成共价键,每个碳原子与另外三个碳原子相连,六个碳原子在同一平面上形成正六边形的环,伸展形成片层结构。

  如果说石墨是一摞扑克牌,那么石墨烯就是这摞扑克牌当中的一张。石墨烯是一种由单层碳原子组成的二维材料,将石墨烯一层一层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。

  20多年前,英国曼彻斯特大学的科学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫认为一定有什么办法能够获得单层的石墨。

  “就像当在纸上写错字的时候,我们会用胶带把错字粘下来。”科学家们据此大胆联想,胶带能够粘下纸上的表层,是不是也能粘下一层一层的石墨?

  实验中,科学家们将热解石墨薄片的两面粘在一种特殊的胶带上,撕开胶带,石墨片被一分为二。虽然此时的石墨厚度距离单层石墨还有十万八千里bat365,但科学家们验证出了这种方法的可行性——每用胶带粘一次,石墨都会变得更薄,坚持用这种“机械剥离法”如此重复操作,他们最终得到了仅由一层碳原子构成的薄片,这就是石墨烯。

  不过,这种用胶带一层层反复剥离石墨薄片得到石墨烯的方法,生产效率低,只能用来制备微米厚度的石墨烯,且无法进行工业化量产。

  后来,随着科技水平的提高,石墨烯的制备方法也有了大幅进步。目前,除了这种传统的物理机械剥离法,还有氧化还原法、溶剂剥离法、化学气相沉积等多种制备石墨烯的方法。

  在科学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫发现石墨烯的若干年后,这两位科学家又在单层和双层石墨烯体系中分别发现了整数量子霍尔效应及常温条件下的量子霍尔效应,并因此获得了2010年度诺贝尔物理学奖。这一发现,使此前一些只能停留在理论想象阶段的量子效应可以通过具体实验来验证,例如“电子无视障碍”“实现幽灵一般的穿越”等实验。

  被称为“新材料之王”的石墨烯,厚度不及普通纸张的三十万分之一,但却是目前已知强度最高的材料之一,在保持高强度的同时还具有很好的韧性,可以弯曲。有这样一个生动的比喻可以感受石墨烯的这种特性——如果用1块面积1平方米的石墨烯做成吊床,这个吊床本身重量将不足1毫克,但可以承受一只猫的重量。

  人们也很难想象,石墨这种几乎是天然界最软的矿物质,但当被“切”成一个碳原子厚度的薄片时,“性格”竟会发生如此之大的变化。

  此外,由于只有一层原子,石墨烯中电子的运动被限制在一个平面上,石墨烯也因此有着全新的电学属性。

  作为世界上导电性最好的材料之一,石墨烯中电子的运动速度可达到光速的三百分之一,远远超过了电子在一般导体中的运动速度。未来,石墨烯有望成为硅的替代品,制造超级计算机的结构部件——超微型晶体管。据相关专家分析,如果用石墨烯取代硅,计算机处理器的运行速度将会提高数百倍。

  无论是具有远红外发热功能、为身体源源不断提供温暖的石墨烯羽绒服,还是抗菌性更强、透气性更好的新型石墨烯口罩,抑或是融合了压力传感技术、精准地感知步态信息的石墨烯智能鞋垫,目前石墨烯和其衍生的二维材料正在被不断开发出来,给人们的生活带来便利。

  在颜色方面,与黝黑的石墨不同,石墨烯只吸收2.3%的光,几乎是完全透明的。这个特征使得它也非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。2018年,中国首条全自动量产石墨烯有机太阳能光电子器件生产线在山东菏泽启动,该项目主要用于生产可在弱光下发电的石墨烯有机太阳能电池,一举破解了使用受限、对角度敏感、不易造型等多项太阳能电池应用难题。

  根据堆叠碳原子的层数不同,石墨烯主要分为单层石墨烯、双层石墨烯、少层石墨烯等类别。本次在月壤中发现的就是具有3~10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子的少层石墨烯。

  我国科学家在发表于《国家科学评论》的文章中这样介绍:他们对嫦娥五号钻采岩屑月壤进行了拉曼光谱分析,发现了石墨碳。接下来,他们通过扫描电子显微成像、透射电子显微成像等多种表征技术的综合运用以及对测试结果的多方面严谨比对分析,探究并证实了这些石墨碳就是少层石墨烯。

  这一发现重塑了我们对月球化学成分、地理事件和历史的理解,提供了对月球起源的新见解,拓宽了人们对月壤复杂矿物组成的认知,支持了月球含碳假说,为未来人类对月球资源的利用提供了新的探索路径。

  凭借优异的力学、热学、电学、光学、摩擦学性能和超强的抗气体渗透性,未来,石墨烯还将在航天材料领域具有广泛的应用前景。

  石墨烯的致密特性,能够帮助检测到气体当中的单个原子。这样的检测器有一个裸露在外的石墨烯表面,气体分子会有效地吸附在表面。当原子黏附在石墨烯表面,其导电性能会产生微小的变化,科研人员通过分析这种变化来实现气体检测的目的。利用检测器对星体表面气体成分进行检测,可以精准测量原子氧密度。通过减少航天器与原子氧的接触,科研人员可以有效避免其强氧化性对航天器表面材料产生严重的剥蚀影响。

  石墨烯的特殊结构使其极易进入摩擦副之间的接触面,形成物理吸附膜,从而增强润滑效果,减小摩擦。目前已有科研人员基于石墨烯润滑添加剂增强效应原理,在传统空间润滑剂中添加石墨烯获得高承载力和低摩擦因数的复合空间润滑材料。

  与其他材料相比,石墨烯强度大重量轻,可以被广泛应用于未来航天器的构件中,而减轻航天器重量意味着减少航天器的能源燃料消耗,节省资金成本。此外,石墨烯还具备较好的抗冲击性,这使得石墨烯成为航天领域应用潜力巨大的材料。

  无论是地球还是太空,人们总能找到石墨烯的身影。未来随着研发的进一步深入,石墨烯的应用也将越来越广泛,期待石墨烯材料给人类带来更多惊喜!

  南美洲的一种肺鱼是迄今发现的拥有最大基因组的动物。通过将美洲肺鱼基因组与其他肺鱼基因组进行比较,研究人员确定,美洲肺鱼每1000万年向其DNA中添加相当于一个人类基因组的基因。

  中国科学院大连化学物理研究所史全研究员团队与吴忠帅研究员团队合作,在前期柔性相变薄膜的研究基础上,进一步改进化学交联合成方法,并利用湿法纺丝技术,开发出一种具有固-固相变特性的本征柔性相变纤维。实际热管理实验表明,该柔性相变纤维具有优异的温度控制性能,为新一代智能调温纤维材料的研究与发展提供了新方向。

  近日,中国医学科学院药物研究所助理教授吴惊香团队揭示了去甲肾上腺素转运体的底物结合及抑制机制,为去甲肾上腺素转运体研究奠定了基础。尽管研究已揭示了去甲肾上腺素转运体的底物结合及抑制机制,但对吴惊香团队来说,“闯关”远未结束。

  研究人员介绍,就像水龙头的阀门可以调节水流的大小,晶体管也能够调控由电子或空穴等载流子形成电流的大小。研究团队通过可控调制热载流子来提高电流密度,发明了一种由石墨烯和锗等混合维度材料构成的“热发射极”晶体管,并提出了一种全新的“受激发射”热载流子生成机制。

  人工智能,从技术层面而言,特指使计算机程序呈现出人类智能的技术;从客观存在层面而言,泛指能够表现出人类智能的机器设备。

  文物和文化遗产承载着中华民族的基因和血脉,是传承历史和文明的载体,也是推进文化自信自强的深厚根基。

  作为数字时代的新型生产要素,数据是数字化、网络化、智能化的基础,已成为发展新质生产力的重要支撑和关键引擎。 多措并举打通束缚新质生产力发展的堵点卡点,让数据要素更好赋能新质生产力发展,是实现中国式现代化的重要任务。

  党的二十届三中全会审议通过的《中央关于进一步全面深化改革、推进中国式现代化的决定》强调,建立人工智能安全监管制度。所谓生成式人工智能技术(AIGC),是指基于算法、模型、规则等,生成文本、声音、图片、视频等内容的新一代人工智能技术。

  “木星冰卫星探测器”(JUICE)将于8月19日、20日飞越地球和月球。次飞越可能是整个飞行任务中最复杂的,因为JUICE必须精确通过与地球和月球相关的正确位点,进而“搭便车”前往金星。

  研究星系的形成和演化,对理解宇宙起源和结构有重要意义。学天文与空间科学学院教授王涛团队揭示黑洞通过调制星系冷气体含量影响星系的形成演化,解开了困扰天文学界半个世纪的谜题。”王涛团队通过对样本星系中原子氢和超大质量黑洞的对比研究,发现星系中心黑洞质量与原子氢含量负相关。

  中国科协推出科普大篷车项目,让“移动科技馆”走到乡村孩子身边。潘薇是安徽省科技馆科普大篷车的第一代科普工作者,“我们常在外边跑,陪伴家人的时间很少。

  这些年来,在各地各方的共同努力下,长城保护、传承与研究工作有序进行,长城的保护状况得到持续改善。

  大学博物馆面向中小学生开放,有利于促进教育资源的共享与普及,对促进知识传播、文化传承、提升学生综合素质都具有积极意义,无疑值得肯定和点赞。

  近年来长江水生生物资源总体呈现恢复向好态势,以十年禁渔为重点的长江大保护系列政策措施取得明显成效。

  “气温每上升1℃,所选育的小麦品种的环境适应能力将下降8.7%。论文第一作者兼通讯作者熊伟建议,未来必须对现有育种策略进行调整,增加抗逆高产品种的遗传多样性,以适应不断增加的极端天气事件。

  日前,中国科学院生物物理研究所研究员赵岩团队和合作者在《自然》发表最新研究成果,为开发治疗与多巴胺转运蛋白(DAT)相关精神疾病的药物提供了重要的指导信息。

  中国汽车工业协会最新统计显示:7月,乘用车国内销量159.5万辆,其中,新能源乘用车国内销量85.3万辆,首次超过传统燃料乘用车74.2万辆的国内销量。